Metabonomics a.k.a. metabolomics a.k.a. metabolic profiling

Application to predicting patient response in cancer clinical trials

Sarah L. Heald, Ph.D. Associate Director, Department of Chemistry Research Analytical and Computational Chemistry January 9, 2006

Bayer HealthCare Pharmaceuticals

NMR-based Metabonomics validated in-house in 2000

✓ platform for risk assessment in rats – support for efficacy studies

Sorafenib, an anti-cancer agent

- resented by West Haven Research for clinical development in 1999
- kinase inhibitor with both anti-proliferative and anti-angiogenic activity

Sorafenib Approved by FDA for RCC

Bayer Biomarker Platform for Oncology

Discovery Strategy - Two Complementary Approaches

Pathway Analysis or Mechanism based

Sample Sources:

blood plasma / serum urine historic biopsy De Novo Biomarker Discovery

• Gene Expression Profile/Pattern (Affymetrix)

• Plasma Protein Expression Pattern (SELDI-Tof)

• Metabolite Profiles (Metabonomics; NMR/LC-MS)

Apply validated assay - Partnership between Pharma and Diagnostics

MetabMeeting2.0, Jan 9, 2006

Example of Pharmacodynamic Biomarker*

* Preliminary analysis from Phase III trial for Renal Cell Carcinoma

Treatment with Sorafenib Results in Decreased Plasma Levels of VEGFR-2 and Increased Levels of VEGF

Sorafenib phase II clinical trial(s)

- 100391 randomized discontinuation trial (501 patients)
- 100557 focus on non-small cell lung cancer (52 patients)

Sample Collection

 Urine collected at prescreen and fixed time points during treatment cycles – random collection, no diet restrictions

Surrogate vs Clinical Endpoint

- Clinical endpoint for cancer is death (change in survival rate)
- For cytotoxic agents a surrogate marker is tumor shrinkage
- Progression-free survival (PFS) may be a more meaningful and relevant surrogate for survival benefit than tumor shrinkage

Application in Clinical Study 100391

GOAL: To investigate the possible predictive relationship of urinary metabolic profiles with patient response

Phase II study 100391:

670 urines received

Urines collected at prescreen (prior to study), cycle 1-day 15, cycle 4-day 1, etc

RENAL:	95 prescreen urines out of	⁵ 202 patients
COLORECTAL:	46	139
OTHER:	27	70
MALIG. MELANOMA:	11	37
OVARIAN, PANCREATIC,		
BREAST, NSCLC, THYROID:	18	53

Clinical data* included Best Response and Progression Free Survival

* ~ 25% of patients have no clinical assessment and 30-40% have censored PFS data

In-House Metabonomic Protocol for Urine

Challenges in NMR Data Interpretation

- Rat urines show limited variability, while human urines are highly variable
- Artifacts mask information from endogenous metabolites and can be repaired
- Less than 10% of the spectra in 100391 needed modification

Overviews of Urinary Metabolic Profiles

At prescreen, non-responders had lower levels of hippurate and urea and higher levels of acetominophen metabolites in their urine

Urines collected post-dose contained an unknown metabolite that was isolated and identified as toluene sulfonic acid

First Pass Modeling* of Prescreen urines

* 190 bins, 9.40 – 0.60 ppm, water and urea excluded

Prediction of PFS from prescreen urine

BUT fail to perform well under validation testing - models are over fit

Me

Optimization of PLS Models

For PLS models, a simple correlation map was used to reduce the number of bins

Correlation matrix Analysis

Genetic Algorithm approach

- All bins found in top 20% of the loading factors
- Neither Hippurate or APAP contribute to models
- Genetic PLS then used to further reduce the number of bins

Performance of Optimized Models

- **PLS-DA used correlation** matrix and 'leave-one-out' approach
- Parameters R²X and Q²Y significantly improve
- Undesirable noise and food metabolites avoided

40 permutations 2 components

Application to NSCLC Clinical Study 100557

GOAL: To investigate the possible predictive relationship of urinary metabolic profiles with patient response

Phase II study 1000557:

52 NSCLC patients

Urines collected at prescreen (prior to study), cycle 1-day 15, cycle 3-day 1, etc

155 urine samples received and analyzed by ¹H NMR

Prescreen:	35	
cycle 1, day 1:	4	not used
cycle 1, day 15:	36	
cycle 3, day 1 :	34	
cycle 5, day 1 :	21	not used – responder only
beyond :	25	not used – responder only

Clinical data included Best Response, Maximum % Lesion Reduction (M%LR), Time to Progression (TTP) and demographic data

Metabolite variability in NSCLC urines

- Screening and "C1, D15" urines have only one sample with a high food artifact
- Starting with "C3, D1", ~30% of the patients received refreshment prior to collection
- All urines from patient xxxx were abnormal and excluded from the modeling efforts

MetabMeeting2.0, Jan 9, 2006

Overview of 100557 Metabolic Profiles

Non-Responders and patients with short TTP have similar profiles

• lower levels of hippurate, citrate and TMAO and higher acetaminophen

Prediction of Best Response from Prescreen

Separation of responders and non-responders achieved in PLS-DA with 8 of 190 bins

Validation testing of the PLS-DA model via independent test sets resulted in 30/32 (94%) classified correctly

Lesion Reduction and Time to Progression

PLS models for Maximum % Lesion Reduction (M%LR) and Time to Progression (TTP) based on 5 bins selected via a genetic algorithm from the top loading factors

Meta

Demographic Analysis of Screening Urines

Metabolite profiling of urine samples also sensitive to demographics

Prediction of Pharmacodynamic Response

Model suggests that responders progress away from starting disease state

MetabMeeting2

Sorafenib achieved FDA approval without needing a biomarker

Metabonomic data obtained from prescreen urines was shown to be capable of predicting patient outcome in cancer phase II trials

- PLS Models need to minimize the number of bins used in each model
- Use of <5% of the NMR spectrum in the model reduces issues over sample variability and food metabolites in urine
- Demographic data helped prioritize metabolites, flagged as potentially important predictors of patient response, for further prosecution
- Method to overcome over fitting caused the OSC-filter was not identified
- Success in part due to small number of patient samples
 - Analysis of RCC phase III trial (3,215 urine samples) in progress

Acknowledgements

Jim Elting Ian Taylor Brian Dixon Chetan Lathia

Informatics Douglas Bigwood

Clinical Development

Brian Schwartz Edward Huguenel

BHC-Diagnostics Walter Carney

Sheryl Brown-Shimer

Sample Logistics Maura Broggi

Immunohistochemistry

Sean Trombley Angela McNabola Kate Georgelos Eileen Novicki David Williams Dean Wilkie

Metabonomics

Jeff Chin Tony Paiva Joanne Salageanu Sally Heald

Proteomics

Gary Davis Timothy Nicholas Christine Silverstrim Walter Pickett

Pharmacogenomics

Timothy Sarr Deborah Webb Nicole Pauloski Gwenda Ligon